
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

OOD-GNN: Out-of-Distribution Generalized
Graph Neural Network

Haoyang Li, Xin Wang, Member, IEEE, Ziwei Zhang, Member, IEEE, Wenwu Zhu, Fellow, IEEE

Abstract—Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from
identical distribution. However, existing GNNs lack out-of-distribution generalization abilities so that their performance substantially
degrades when there exist distribution shifts between testing and training graph data. To solve this problem, in this work, we propose an
out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that
have different distributions with training graphs. Our proposed OOD-GNN employs a novel nonlinear graph representation decorrelation
method utilizing random Fourier features, which encourages the model to eliminate the statistical dependence between relevant and
irrelevant graph representations through iteratively optimizing the sample graph weights and graph encoder. We further present a global
weight estimator to learn weights for training graphs such that variables in graph representations are forced to be independent. The
learned weights help the graph encoder to get rid of spurious correlations and, in turn, concentrate more on the true connection between
learned discriminative graph representations and their ground-truth labels. We conduct extensive experiments to validate the
out-of-distribution generalization abilities on two synthetic and 12 real-world datasets with distribution shifts. The results demonstrate that
our proposed OOD-GNN significantly outperforms state-of-the-art baselines.

Index Terms—Graph Representation Learning, Graph Neural Networks, Out-of-Distribution Generalization.

F

1 INTRODUCTION

GRAPH structured data is ubiquitous in the real world,
e.g., biology networks [1], social networks [2], molec-

ular graphs [3], knowledge graphs [4], etc. Recently, deep
learning models on graphs, especially graph neural networks
(GNNs) [5–7], have increasingly emerged as prominent ap-
proaches for representation learning of graphs [8]. Significant
methodological advances have been made in the field of
GNNs, which have achieved promising performance in a
wide variety of applications [9–12].

Despite their enormous success, the existing GNN ap-
proaches for graph representation learning generally assume
that the testing and training graph data are independently
sampled from the identical distribution, i.e., the I.I.D. assump-
tion. In many real-world scenarios, however, it is difficult
to guarantee this assumption to be valid. In particular, the
testing distribution may suffer unobserved or uncontrolled
shifts compared with the training distribution. For example,
in the field of drug discovery, the prediction of biochemical
properties of molecules is commonly trained on limited
available experimental data, but the model needs to be
tested on an extraordinarily diverse and combinatorially
large universe of candidate molecules [13, 14]. The model per-
formance of existing methods can be substantially degraded
under distribution shifts due to the lack of out-of-distribution
(OOD) generalization ability in realistic data splits [3, 15].
Therefore, it is of paramount importance to learn GNNs
capable of out-of-distribution generalization and achieve
relatively stable performances under distribution shifts,

• H. Li, X. Wang, Z. Zhang and W. Zhu are with the Department

of Computer Science and Technology in Tsinghua University, Bei-

jing, China. E-mail: lihy18@mails.tsinghua.edu.cn, {xin_wang, zwzhang,

wwzhu}@tsinghua.edu.cn Corresponding authors: X. Wang and W. Zhu

Manuscript received April 19, 2005; revised August 26, 2015.

especially for some high-stake applications, e.g., medical
diagnosis [16], criminal justice [17], financial analysis [18],
and molecular prediction [3], etc.

Some pioneering works [19–21] focus on the size gen-
eralization problem by testing on larger graphs than the
training graphs. Besides size generalization, the capability of
out-of-distribution generalization for GNNs is not explored
until recently [22]. In out-of-distribution scenarios, when
there exist complex heterogeneous distribution shifts, the
performance of current GNN models can degrade substan-
tially, which is mainly induced by the spurious correlations.
The spurious correlations intrinsically come from the subtle
correlations between irrelevant representations and relevant
representations [23, 24]. For example, in the field of drug
discovery (see Figure 1c), the GNN models trained on
molecules with one group of scaffolds (two-dimensional
structural frameworks of molecules) may learn the spurious
correlations between the scaffolds and labels (i.e., whether
some drug can inhibit HIV replication) [3, 15]. When tested
on molecules with different scaffolds (out-of-distribution
testing molecules), the existing GNN models may make
incorrect predictions based on the spurious correlations.

In this paper, we propose to learn decorrelated graph
representations through sample reweighting [25, 26] to
eliminate the dependence between irrelevant and relevant
representations, which is one of the major causes of degrad-
ing model performance under distribution shifts. However,
learning decorrelated graph representations to improve out-
of-distribution generalization for GNNs is fundamentally
different from traditional methods and thus remains largely
unexplored and challenging. Specifically, it poses the follow-
ing challenges.

• GNNs fuse heterogeneous information from node fea-
tures and graph structures such that the complex and

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

(a) TRIANGLES (b) MNIST-75SP: Super-pixel Graphs

(c) OGB Molecule Dataset [27]. For validating OOD generalization, this dataset is split based on the scaffolds
(i.e., two-dimensional structural frameworks) of molecules. The testing set consists of structurally distinct
molecules with scaffolds that are not in the training set. Please refer to Section 4.1.2 for more details.

Fig. 1: Examples of out-of-distribution testing graphs under complex distribution shifts. Figure 1a denotes the models are
trained on small graphs but tested on larger graphs. Figure 1b denotes the models trained with clean node features but
tested with noisy features. Figure 1c represents a more realistic and challenging case, i.e., distribution shifts exist on both
graph structures and node features.

unobserved non-linear dependencies among represen-
tations are much more difficult to be measured and
eliminated than the linear cases for decorrelation of
non-graph data.

• Although sample reweighting is effective on small
datasets, for real-world large-scale graphs, it is inefficient
or even infeasible to consistently learn a global weight
for each graph in the dataset due to the high computa-
tional complexity and excessive storage consumption.

To tackle these challenges, we propose a novel out-of-
distribution generalized graph neural network (OOD-GNN)
capable of handling graph distribution shifts in complex and
heterogeneous situations. In particular, we first propose to
eliminate the statistical dependence between relevant and
irrelevant graph representations of the graph encoder by a
novel nonlinear graph representation decorrelation method
utilizing random Fourier features [28–30], which scales lin-
early with the sample size and can get rid of unexpected spu-
rious correlations. Next, to reduce computational complexity,
we present a scalable global-local weight estimator to learn
the sample weight for each graph. The local weights for a
mini-batch of graphs and global weights for the entire graphs
are optimized jointly to effectively maintain the consistency
of weights over the whole graph dataset [29, 31, 32]. Finally,
the parameters of the graph encoder and sample weights for
graph representation decorrelation are optimized iteratively
to learn discriminant graph representations for predictions.

We conduct extensive experiments on both synthetic
graph datasets and well-known real-world graph bench-
marks. The experimental results demonstrate that the repre-
sentations learned from OOD-GNN can achieve substantial
performance gains on the graph prediction tasks, including
graph classification and regression, under distribution shifts.

The contributions of this paper are summarized as
follows:

• We propose a novel out-of-distribution generalized
graph neural network (OOD-GNN) capable of learning
out-of-distribution (OOD) generalized graph representa-
tion under complex distribution shifts.

• We propose a nonlinear graph representation decorre-
lation method based on random Fourier features and
sample reweighting. The decorrelated graph representa-
tions can substantially improve the out-of-distribution
generalization ability in various OOD graph prediction
benchmarks.

• We present a scalable global-local weight estimator to
learn graph weights for the whole dataset consistently
and efficiently. Extensive empirical results show that
OOD-GNN greatly outperforms baselines on various
graph prediction benchmarks under distribution shifts.

We review related works in Section 2. In Section 3, we
describe the problem formulation and the details of our
proposed OOD-GNN. Section 4 presents the experimental
results including quantitative comparisons on both synthetic
and real-world datasets, ablation studies, complexity analy-
sis, hyper-parameter sensitivity, etc. Finally, we conclude our
work in Section 5.

2 RELATED WORKS

Graph Neural Network. GNNs [5–7] have been attracting
considerable attention in recent years because of their notable
success in representing graph-structure data. They generally
utilize a message-passing paradigm, which combines node
features and graph topology to update node embeddings.
To obtain the representation of the entire graph, graph

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

pooling [7, 33, 34] is adopted to summarize node em-
beddings. Many GNNs and their variants [35–38] have
been proposed, achieving state-of-the-art performance on
various graph tasks, including node classification [5], link
prediction [39], and graph classification [7, 40]. Despite their
successes, the performance of GNNs drops substantially
when there are distribution shifts between training and
testing graphs [3, 15, 27, 41]. The existing works largely
ignore the out-of-distribution generalization ability of GNNs,
which is crucial to realistic applications deployed in the wild.

Size generalization of GNNs. The main goal of size
generalization is to make GNNs work well on testing graphs
whose size distribution is different from that of training
graphs [19–21, 42–44]. In these works, GNNs are usually
trained on relatively small graphs and then generalize to
larger graphs (or vice versa) with the help of attention
mechanisms [19], self-supervised learning [20], causal mod-
eling [21], etc. However, most existing methods only test
on graphs of different sizes and ignore more realistic and
challenging settings where the distribution shifts emerge in
the graph topologies and node features.

The expressiveness of GNNs. The Weisfeiler-Lehman
graph isomorphism test is most commonly used to measure
the expressiveness power of GNNs [7, 36]. Assuming ap-
propriate optimization, a more expressive GNN can achieve
smaller error on the training data [45]. Some works [46, 47]
study the generalization capability of GNNs over the training
distribution with deriving generalization bounds. These
works are orthogonal to out-of-distribution generalization,
including unseen graph topological structures and features
studied in this paper. The findings in [22] show that encoding
task-specific non-linearities in the GNN architecture or
features can improve the out-of-distribution generalization.
However, it is largely unknown in practice that how to
enhance the generalization ability of GNNs when there are
distribution shifts between training and testing graphs.

Representation decorrelation. The spurious correlation
between the irrelevant (non-critical) representations and
labels is recognized as one major cause of model degra-
dation under distribution shifts [48–51]. Some pioneering
works adopt regularizers to penalize high correlation ex-
plicitly [48, 52, 53]. However, these methods could intro-
duce a substantial computational overhead, yield marginal
improvements, or require extra supervision to control the
strength of the penalty. There are also some works learning
decorrelated representations with sample reweighting [26, 54–
56], which is shown effective in improving the generalization
ability theoretically (e.g., SRDO [54]) and empirically (e.g.,
DWR [55]). However, most of these methods are proposed
under linear settings. In contrast, GNNs fuse heterogeneous
information from node features and graph topological struc-
tures so that there exist complex and unobserved non-linear
dependencies among representations. The linear sample
reweighting methods can not be applied to eliminate non-
linear dependencies for the decorrelation of graph data.
The effectiveness of non-linear decorrelation methods (e.g,
ReBias [57], StableNet [29]) is validated on images recently.
However, non-linear decorrelation on graphs remains largely
unexplored.

TABLE 1: Notations.

Notation Description

Gtr,Gte The training and testing graph dataset
N tr, N te The number of graphs in Gtr and Gte

G,Y The graph space and label space
Z The representation space
G,Y The random variable of graph and label
Z The random variable of representation
� The graph encoder from G to Z
R The classifier from Z to Y
Gn A graph instance
W The graph weight vector
wn The weight for the graph Gn

3 METHOD

3.1 Notations and Problem Formulation

Let Gtr
= {Gn}

Ntr

n=1
and Gte

= {Gn}
Nte

n=1
be the training and

testing graph dataset, which are under distribution shifts,
i.e., P(Gtr

) 6= P(Gte
). Gte is unobserved in the training

stage. A graph encoder � : G ! Z is a mapping from
the input graph space G to a d-dimensional representation
space Z . In this work, we consider � as GNNs. R : Z ! Y

is a classifier, mapping the representation space Z to the
label space Y . G,Z,Y denote sets of random variables in
G,Z,Y , respectively. Denote graph representations for Gtr

as Z ⇢ RNtr⇥d. Zn⇤ denotes the representation of the n-
th graph and Z⇤i is the random variable corresponding to
the i-th dimension of Z. Graph weights are W = {wn}

Ntr

n=1
,

where wn is the weight for the n-th graph Gn in Gtr and
we constrain

PNtr

n=1
wn = N

tr. By jointly optimizing the
graph encoder �, classifier R, and graph weights W, we aim
to eliminate the statistical dependence of all dimensions in
representation Z such that the predictor R � � : G ! Y can
achieve satisfactory generalization performance when testing
on out-of-distribution graphs P(Gte

). The key notations are
summarized in Table 1. The formal definition of graph-level
OOD generalization is as follows:

Definition 3.1 (Graph OOD Generalization). Given the train-
ing set Gtr, the goal is to learn an optimal graph predictor
R � � : G ! Y that can achieve the best generalization on
the test graph data Gte under unknown distribution shifts,
i.e., P(Gtr

) 6= P(Gte
).

Note that we expect to generalize the learned graph
predictor on the OOD testing graphs instead of overfitting
the training graphs, which can largely benefit the deployment
of the graph predictor in the wild. The framework of our
proposed method is shown in Figure 2.

3.2 Statistical Independence with Graph Reweighting

In this subsection, we describe the nonlinear graph represen-
tation decorrelation method to eliminate the statistical depen-
dence of graph representations based on graph reweighting.
Please refer to Appendix A for the background knowledge on
the relationship of out-of-distribution (OOD) generalization
and statistical independence, including the reason why the
statistical dependence of graph representations should be
eliminated for achieving OOD generalization.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

�

1�

Graph
Dataset

Graph
Encoder Φ

�

Graph
Representation &
"!∗

"#!"∗

�

"!∗

"#!"∗

Graph
Classifier ℛ �

#$!

#$#!"
Objective

Weighted
Loss

"!

�

1

"#!"

�

�

"!∗

"#!"∗

"∗$ "∗% "!

"#!"

�

"!

�

1

"#!"

� Optimized Weights
for "∗$ "∗%⊥

Graph Encoding Graph Reweighting

Learning Φ and ℛ with weighted prediction loss

Encourage
Independence

Fig. 2: The framework of the proposed method.

The correlation between relevant and irrelevant parts in
representations is recognized as the main performance obsta-
cle when P(Gtr

) 6= P(Gte
), i.e., OOD testing data [26, 58].

The relevant parts in representations denote the truly dis-
criminant information to predict ground-truth labels, which
are invariant under distribution shifts, e.g., the predictive
functional groups of molecules. On the other hand, the
irrelevant parts include non-informative features that could
change across different domains, e.g., scaffold structure in
predicting molecule functions. GNNs fuse available infor-
mation from node features and graph topologies into a
unified low-dimensional representation for each graph. So it
is difficult or even infeasible to distinguish which dimension-
ality in the representation denotes relevant and irrelevant
parts without extra supervision, which is unavailable and
expensive to collect. Therefore, we propose to encourage the
graph encoder to eliminate the statistical dependence of all
dimensions in the graph representation. Note that we assume
encouraging independence of all dimensions can benefit the
OOD generalization and empirically observe this assumption
is valid on the datasets and tasks in this work. Formally, we
expect

Z⇤i ?? Z⇤j , 8i, j 2 [1, d], i 6= j. (1)

For measuring the independence between continuous
random variables Z⇤i and Z⇤j in d-dimensional graph
representation space Z , it is inapplicable to resort to
histogram-based measures unless d is small enough. So we
introduce Hilbert-Schmidt Independence Criterion (HSIC)
that can avoid the intractable explicit estimation of the
joint distribution of the random variables and shows the
strong empirical performance [59]. Specifically, consider a
measurable, positive definite kernel kZ⇤i on the domain of
random variable Z⇤i. Denote the corresponding Reproducing
Kernel Hilbert Spaces (RKHS) by HZ⇤i . HSIC is defined
as HSIC(Z⇤i,Z⇤j) := kCZ⇤i,Z⇤jk

2

HS
, where CZ⇤i,Z⇤j is the

cross-covariance operator in the RKHS of kZ⇤i and kZ⇤j . The
independence can be determined as follows [60].

Proposition 1. Assume E[kZ⇤i(Z⇤i,Z⇤i)] < 1 and

E[kZ⇤j (Z⇤j ,Z⇤j)] <1, and kZ⇤ikZ⇤j is a characteristic kernel,

then

HSIC(Z⇤i,Z⇤j) = 0, Z⇤i ?? Z⇤j . (2)

In practice, the finite-sample estimate of HSIC has been
widely used [59]. However, it is infeasible to be utilized for
training the graph encoder � on large-scale datasets (e.g.,
the OGBG-MOLHIV dataset in our experiments contains
41,127 graphs). The bottleneck lies in that the computational

cost of HSIC grows as the batch size of training data
increases. We therefore consider the squared Frobenius norm
k bCZ⇤i,Z⇤jk

2

F
, an analogue corresponding to the HSIC in

Euclidean space1 [29, 57], where bCZ⇤i,Z⇤j is the partial cross-
covariance matrix defined as:

bCZ⇤i,Z⇤j =
1

Ntr�1

PNtr

n=1

⇣
f(Zni)�

1

Ntr

PNtr

m=1
f(Zmi)

⌘>

·

⇣
g(Znj)�

1

Ntr

PNtr

m=1
g(Zmj)

⌘i
,

(3)
where Zni and Znj denote the value of random variables Z⇤i
and Z⇤j given the input graph Gn. f(·) and g(·) denote the
random Fourier features concatenated from the Q selected
functions from the random Fourier features function space:

f(Z⇤i) := (f1(Z⇤i), f2(Z⇤i), . . . , fQ(Z⇤i)),

g(Z⇤j) := (g1(Z⇤j), g2(Z⇤j), . . . , gQ(Z⇤j)),
(4)

with fq(Z⇤i), gq(Z⇤j) 2 HRFF, 8q 2 [1, Q]. HRFF = {h :

x !
p
2cos(wx + �)|w ⇠ N (0, 1),� ⇠ Uniform(0, 2⇡)}

denotes the random Fourier features function space. The
Eq. (4) means that we select Q functions from HRFF and
concatenate their outputs for the calculation of the partial
cross-covariance matrix bCZ⇤i,Z⇤j defined in Eq. (3). In a
nutshell, we employ random Fourier feature (RFF) because
it is an effective technique to approximate kernel-based
independence test accurately and efficiently [29, 30, 61]. Note
that as Q grows, the accuracy of independence judgement
increases. And Q = 5 is solid enough to measure the
independence of random variables in practice [29, 61].

Using the independence criterion above, we elaborate
on graph reweighting which encourages the independence
of the variables in graph representation. Define the graph
weights W = {wn}

Ntr

n=1
where wn 2 R is the learnable

weight for the n-th graph Gn in the training set. The graph
weights can be directly utilized into Eq. (3), so the partial
cross-covariance matrix can be calculated as:

bCW
Z⇤i,Z⇤j = 1

Ntr�1

PNtr

n=1

⇣
wnf(Zni)� 1

Ntr

PNtr

m=1
wmf(Zmi)

⌘>

·
⇣
wng(Znj)� 1

Ntr

PNtr

m=1
wmg(Zmj)

⌘i
.

(5)
The learnable graph weight W participates in the op-

timization process to eliminate the dependence between
representations to the greatest possible extent by minimizing
the squared Frobenius norm of the partial cross-covariance
matrix k bCW

Z⇤i,Z⇤j
k
2

F
in Eq. (5).

For the optimization, we iteratively optimize the graph
weights W, graph encoder �, and classifier R:

�
⇤
,R

⇤
= argmin

�,R

NtrX

n=1

wn` (R � � (Gn) ,Yn) , (6)

W⇤
= argminW

X

1i<jd

k bCW
Z⇤i,Z⇤jk

2

F
, (7)

where ` denotes the cross-entropy loss for graph classification
tasks or mean squared error loss for graph regression tasks.
The optimization of graph weights W in Eq. (7) encourages
the graph encoder to generate the graph representations
Z = �(G), where each dimension keeps independent with

1. In a finite-dimensional Euclidean space, the Hilbert–Schmidt norm
k·kHS is identical to the Frobenius norm.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

others and thus eliminates the spurious correlations. The
optimization of graph encoder � and classifier R in Eq. (6)
based on the weighted graph datasets will lead to good
performance on the specific prediction tasks.

3.3 Global-Local Graph Weight Estimator

Note that directly optimizing Eqs. (6)(7) requires all N
tr

graph weights W and representations Z to calculate accu-
rately bCW

Z⇤i,Z⇤j
. Therefore, we need to load the entire dataset

simultaneously for optimization, which is infeasible on
large-scale datasets due to the high computational cost and
excessive storage consumption. A straightforward alternative
is to learn only graph representations and corresponding
weights over a mini-batch of data. However, the consistency
of the weights cannot be maintained since different mini-
batches do not share information. Therefore, the dependence
between different graph representation dimensions is hard
to eliminate over the whole training dataset.

To tackle this problem, we present a novel scalable global-
local weight estimator to achieve the balance of optimization
efficiency and weight consistency, inspired by [29, 31, 32]. In
essence, the motivation of adopting global weights is to save
the global information over the whole dataset with constant
size memory and keep the consistency of the learnable
weights of all mini-batches. And we use the local weights to
encourage the independence of different dimensions of the
graph representations over a mini-batch. Next, we elaborate
on the detailed designs of global and local weights, as well
as their interactions.

Global weights. We maintain K groups of global repre-
sentations Z(g)

= [Z(g1), · · · ,Z(gK)
] and the corresponding

global weights W(g)
= [W(g1), · · · ,W(gK)

], where K is a
hyper-parameter denoting the number of groups and the size
of each group equals to the mini-batch, i.e., Z(gk) 2 R|B|⇥d

and W(gk) 2 R|B|. Z(gk) is initialized to an all-zero matrix
and W(gk) is uniformly initialized to an all-one vector 1|B|.
They serve as the memory of the encoded graph repre-
sentations and the corresponding weights from historical
mini-batches during the training stage. Since these global
representations and weights are shared across different mini-
matches, they maintain a global summarization of the whole
training dataset. The size of global weights only depends
on the mini-batch size, which is a hyper-parameter and
independent of the training dataset size.

Local weights. For each mini-batch B of the input graphs
{Gn}

|B|
n=1

, we first calculate their graph representations
Z(l)

= {Z(l)
n⇤}

|B|
n=1

, Z(l)
n⇤ = �(Gn) and uniformly initialize

the local graph weights to an all-one vector 1|B|, i.e.,
W(l)

= (1, 1, . . . , 1). Then, the local graph representations
Z(l) and weights W(l) are concatenated with the K groups
of global graph representations Z(g) and weights W(g) for
optimization. We denote

bZ =

h
Z(g1), · · · ,Z(gK)

k Z(l)
i
2 R(K+1)|B|⇥d

,

cW =

h
W(g1), · · · ,W(gK)

kW(l)
i
2 R(K+1)|B|

,

(8)

where [· k ·] is concatenation. Then, we calculate the weighted
partial cross-covariance matrix in Eq. (5) using bZ, cW and
optimize the objective function. Using this estimator, the

computational cost for each mini-batch is O((K + 1)|B|), as
opposed to O(N

tr
) in directly optimizing Eqs. (6)(7).

Weights Update. At the end of each training iteration, we
adopt a momentum update to dynamically update the global
representations Z(g) and weights W(g) by the optimized
local Z(l) and W(l):

Z(gk) �kZ
(gk) + (1� �k)Z

(l)
,

W(gk) �kW
(gk) + (1� �k)W

(l)
.

(9)

Eq. (9) shows the interaction of global and local representa-
tions and weights. Here �k 2 [0, 1) is a momentum coefficient
for each group of global representations Z(gk) and weights
W(gk). The global Z(gk) and W(gk) with a large �k serve as
a long-term memory for global information over the whole
training dataset, while those with a small �k serve as a short-
term memory. Finally the global weights can be progressively
updated and ensure the consistency of the whole graph
dataset.

3.4 Training Procedure

The training procedure of our proposed OOD-GNN is shown
in Algorithm 1.

Algorithm 1 The training procedure of OOD-GNN.

Input: A graph dataset G = {Gn}
N
n=1

Output: Learned graph encoder �⇤ and classifier R⇤

1: for e 1 to Epoch do
2: for sampled minibatch B = {Gn}|B|

n=1
do

3: Calculate Z(l) = {Z(l)
n⇤}|B|

n=1
, Z(l)

n⇤ = �(Gn)
4: Initialize W(l) = (1, 1, . . . , 1)
5: Concatenate global and local representations/weights

as Eq. (8)
6: for e0 1 to Epoch_Reweight do
7: Optimize the graph weights by minimizing Eq. (7)
8: end for
9: Back propagate with weighted prediction loss as

Eq. (6)
10: Update global representations and weights as Eq. (9)
11: end for
12: end for

At the training stage, we iteratively optimize the graph
weights W, graph encoder �, and classifier R. Specifically, as
shown in Algorithm 1, we first perform forward propagation
for each sampled minibatch B to obtain the local graph
representations Z(l)

= {Z(l)
n⇤}

|B|
n=1

, Z(l)
n⇤ = �(Gn) (line 3 in

Algorithm 1) and uniformly initialize the local graph weights
W(l)

= (1, 1, . . . , 1) (line 4). To maintain consistency of the
weights and improve efficiency, we concatenate the global
representations and weights with local representations and
weights to obtain bZ and cW (line 5). After that, we calculate
the partial cross-covariance matrix bCcW

bZ⇤i,bZ⇤j
and optimize

the graph weights by minimizing the following objective
function (line 7):

W(l)⇤
= argminW(l)

X

1i<jd

k bCcW
bZ⇤i,bZ⇤j

k
2

F
, (10)

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 2: The statistics of the datasets. #Graphs is the number of graphs in the dataset. Average #Nodes/#Edges are the
average number of nodes and edges in a graph of the dataset, respectively. #Tasks denotes the dimensionality of output
required for prediction. Task type includes binary classification, multi-classification, and regression. The various split
methods for training/validation/testing dataset cover complex and realistic distribution shifts.

Category Name #Graphs Average
#Nodes

Average
#Edges #Tasks Task

Type
Split

Method Metric

Synthetic TRIANGLES 4,000 15.6 48.9 1 Regression Size Accuracy
MNIST-75SP 7,000 66.8 600.2 1 Multi-class. Feature Accuracy

Molecule and
social datasets

COLLAB 5,000 74.5 2457.8 1 Multi-class. Size Accuracy
PROTEINS 1,113 39.1 72.8 1 Binary class. Size Accuracy
D&D 1,178 284.3 715.7 1 Binary class. Size Accuracy

Open Graph Benchmark
OGBG-MOL*

TOX21 7,831 18.6 19.3 12 Binary class. Scaffold ROC-AUC
BACE 1,513 34.1 36.9 1 Binary class. Scaffold ROC-AUC
BBBP 2,039 24.1 26.0 1 Binary class. Scaffold ROC-AUC
CLINTOX 1,477 26.2 27.9 2 Binary class. Scaffold ROC-AUC
SIDER 1,427 33.6 35.4 27 Binary class. Scaffold ROC-AUC
TOXCAST 8,576 18.8 19.3 12 Binary class. Scaffold ROC-AUC
HIV 41,127 25.5 27.5 1 Binary class. Scaffold ROC-AUC
ESOL 1,128 13.3 13.7 1 Regression Scaffold RMSE
FREESOLV 642 8.7 8.4 1 Regression Scaffold RMSE

Next, we optimize the graph encoder � and classifier R by
performing back propagation with weighted prediction loss
(line 9):

�
⇤
,R

⇤
= argmin

�,R

|B|X

n=1

wn` (R � � (Gn) ,Yn) , (11)

where wn = W(l)⇤
n is the optimized weight for the n-th

graph in the minibatch B. At the end of each iteration,
the global representations and weights are updated by
the optimized local graph representations and local graph
weights (line 10).

At the testing stage, we directly adopt the optimized
graph encoder �⇤ and classifier R⇤ to learn graph represen-
tations and conduct predictions.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
the proposed OOD-GNN on both synthetic and real-world
datasets and conduct ablation studies. More experimental
results (including hyper-parameter sensitivity, training dy-
namic, weight distribution, time complexity, etc.) are also
present and analyzed in detail.

4.1 Experimental Setup

4.1.1 Baselines

We compare our OOD-GNN with several representative
state-of-the-art methods:
• GCN [5]: It is one of the most famous GNNs, following a

recursive neighborhood aggregation (or message passing)
scheme.

• GIN [7]: It is shown to be one of the most expressive
GNNs in representation learning of graphs.

• GCN-virtual and GIN-virtual [15]: We also consider the
variants of GCN and GIN augmented with virtual node,
i.e., adding a node that is connected to all the nodes in
the original graphs.

• FactorGCN [62]: It decomposes the input graph into
several interpretable factor graphs for graph-level dis-
entangled representations, which is a state-of-the-art
disentangled GNN model for graph classification.

• �GIN [21]: It adopts a causal model to learn size-invariant
graph representations that can extrapolate to unseen test
graphs with different graph sizes.

• PNA [63]: It takes multiple neighborhood aggregation
schemes into account and generalizes several GNN mod-
els with different neighborhood aggregation schemes.

• TopKPool [64]: It propagates only part of the input and
this part is not uniformly sampled from the input. It can
thus select some local parts of the input graph and ignore
the rest to summarize the graph representation.

• SAGPool [33]: It is a graph pooling method based on
self-attention mechanism, which can be used to calculate
attention scores and retain important nodes for graph-
level representation.

4.1.2 Datasets
To cover more realistic and challenging cases of graph
distribution shifts, we compare our method and baselines on
both synthetic and real-world datasets:
• Synthetic Datasets.

We use two synthetic datasets to evaluate the effectiveness
of our proposed method, and examples of these datasets
are shown in Figure 1a and 1b.
(1) TRIANGLES. Counting the number of triangles in
a graph is a common task that can be solved analyt-
ically but is challenging for GNNs. We first generate
4,000 random graphs using Erdős-Rényi model [65],
i.e., ER(#Node, #Edge), where each graph has #Node
nodes and the number of edges #Edge is randomly
selected from [#Node, 2⇤#Node]. We train on graphs
containing 4 to 25 nodes, and test on graphs with 4 to
100 nodes. The node features are set as one-hot degrees.
The dataset is split into 3,000/500/500 graphs used as
training/validation/testing sets. The task is to predict
the number of triangles in each graph. The number of
classes is 10 (i.e., each graph has 1 to 10 triangles). Based

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 3: Graph classification accuracy (%) on training and testing sets of two synthetic datasets. Test(large) denotes larger
graph sizes in testing set and Test(noise)/Test(color) represent adding Gaussian noises/color noises respectively. In each
column, the boldfaced score denotes the best result and the underlined score represents the second-best result. ± denotes
standard deviation.

TRIANGLES MNIST-75SP
Train Test(large) Train Test(noise) Test(color)

GCN 28.3±0.6 21.3±1.9 51.7±1.0 26.5±1.4 27.0±1.3
GCN-virtual 32.4±0.6 17.0±1.8 55.1±2.3 26.0±1.5 26.1±1.8

GIN 34.7±0.7 22.2±1.9 67.6±0.8 27.9±2.5 34.3±4.4
GIN-virtual 34.2±0.6 17.6±1.7 66.7±0.9 25.7±2.9 33.4±1.2
FactorGCN 10.6±1.6 4.2±0.9 46.7±1.2 19.7±1.4 24.8±1.3

�GIN 23.5±3.4 18.0±2.0 47.5±1.3 23.7±1.4 28.3±1.8
PNA 43.7±3.6 16.8±2.4 83.0±0.9 22.8±7.3 29.2±6.3

TopKPool 28.3±0.3 22.0±0.2 61.0±3.7 17.0±1.0 16.9±1.5
SAGPool 26.7±1.0 23.7±0.7 60.2±1.3 19.6±3.4 20.1±3.7

OOD-GNN 29.9±0.7 25.1±0.8 63.2±1.1 31.5±0.9 38.5±1.5

on this setting, there exist distribution shifts with regard
to graph sizes between training and testing data.
(2) MNIST-75SP. Each graph in MNIST-75SP is converted
from an image in MNIST [66] using super-pixels [67]. We
randomly sample 7,000 images of MNIST and extract
no more than 75 superpixels for each image to generate
the graph. The node features are set as the super-pixel
coordinates and intensity. There are 6,000 graphs used for
training (of which the holdout 10% graphs for validation)
and 1,000 graphs used for testing. The task is to classify
each graph into the corresponding handwritten digit
labeled from 0 to 9. To simulate distribution shifts with
respect to graph features, we follow [19] and generate two
testing graph datasets. For the first testing set, Test(noise),
we add Gaussian noise, drawn from N (0, 0.4), to node
features. For the second testing set, Test(color), we col-
orize images by adding two more channels and add
independent Gaussian noise, drawn from N (0, 0.4), to
each channel. The graph structures (adjacency matrices)
are not changed for testing graphs.

• Real-world Datasets.
(1) Molecule and social datasets. We consider three
commonly used graph classification benchmarks: COL-
LAB [68], PROTEINS [69], and D&D [70]. Following
[19], these datasets are split based on the size of each
graph. D&D200 and D&D300 denote the two datasets
whose maximum graph size in the training set is 200 and
300, respectively. All the methods are trained on smaller
graphs and tested on unseen larger graphs. Specifically,
COLLAB is derived from 3 public collaboration datasets,
i.e., High Energy Physics, Condensed Matter Physics, and
Astro Physics. We train on graphs with 32 to 35 nodes
and test on graphs with 32 to 492 nodes. PROTEINS is
a protein dataset. We train on graphs with 4 to 25 nodes
and test on graphs with 6 to 620 nodes. D&D is also a
dataset that consists of proteins. We consider two types
of splitting methods, termed D&D200 and D&D300. For
D&D200, we train on graphs with 30 to 200 nodes and
test on graphs with 201 to 5, 748 nodes. For D&D300,
we train on 500 graphs with 30 to 300 nodes and test on
other graphs with 30 to 5, 748 nodes.
(2) Open Graph Benchmark (OGB) [15]. We consider 9
graph property prediction datasets from a benchmark
of distribution shifts OGBG-MOL⇤ in Open Graph

Benchmark (OGB), i.e., TOX21, BACE, BBBP, CLINTOX,
SIDER, TOXCAST, HIV, ESOL, FREESOLV. The task is
to predict the target molecular properties as accurately
as possible. We adopt the default scaffold splitting
procedure, namely splitting the graphs based on their two-
dimensional structural frameworks. The scaffolds denote
the basis structures of molecules, which are the frequently
occurring common subgraphs in the datasets. Although
such subgraphs do not provide the truly discriminant
information to predict ground-truth labels, they may
form the spurious correlations with labels. Therefore, this
scaffold splitting strategy separate structurally different
molecules into different subsets, which provides a more
realistic and challenging scenario of out-of-distribution
generalization. Figure 1c shows some examples of the
dataset.

4.1.3 Implementation Details

The number of epochs (i.e., Epoch in Algorithm 1) is set to 100.
The batch size is chosen from {64, 128, 256}. The learning rate
is chosen from {0.0001, 0.001, 0.005}. The number of epochs of
learning graph weights (i.e., Epoch_Reweight in Algorithm
1) is set to 20. The dimensionality of the representations and
hidden layers d is chosen from {128, 300} for OGB, and {64,
256} for other datasets. While our method is general and
compatible with most representative GNNs, we focus on
using GIN [7] as the graph encoder in our experiments, since
it is shown to be one of the most expressive GNNs in graph
classification, and the number of layers is chosen from [2,
6]. We set Q = 1 to sample random Fourier features. The
`
2-norm is adopted on the weights to prevent degenerated

solutions. The number of groups of global representations
and weights K = 1 with the momentum coefficient � = 0.9

in the updating step. The classifier R : Z ! Y is realized
by a two-layer MLP. Note that for OGB datasets, we adopt
the default validation set provided by the benchmark for
fair comparisons, and use the holdout validation set from
training set for the other datasets. Specifically, we hold out
10% training data as validation set for COLLAB, PROTEINS,
and D&D. The holdout validation set follows the same
distribution as the training set. We report the mean values
with standard deviations of 10 repeated experiments.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4: Graph classification accuracy (%) on the testing set of OOD-GNN and baselines. Our OOD-GNN outperforms
the baselines significantly on all graph classification benchmarks, indicating its superiority against graph size distribution
shifts. The best result and the second-best result for each dataset are in bold and underlined, respectively.

COLLAB35 PROTEINS25 D&D200 D&D300

Train/Test graphs 500/4500 500/613 462/716 500/678
#Nodes Train 32-35 4-25 30-200 30-300
#Nodes Test 32-492 6-620 201-5748 30-5748

GCN 65.9±3.4 75.1±2.2 29.2±8.2 71.9±3.6
GCN-virtual 61.5±1.6 70.4±3.7 41.6±8.0 71.6±4.4

GIN 55.5±4.9 74.0±2.7 43.0±8.3 67.8±4.3
GIN-virtual 54.8±2.7 66.0±7.5 46.7±4.5 72.1±4.3
FactorGCN 51.0±1.3 63.5±4.8 42.3±3.1 55.9±1.6

�GIN 65.2±2.3 62.6±3.6 59.6±4.9 74.2±2.8
PNA 59.6±5.5 71.4±3.4 47.3±6.8 70.1±2.1

TopKPool 52.8±1.0 64.9±3.0 34.6±5.6 69.3±3.6
SAGPool 67.0±1.7 76.2±0.7 54.3±5.0 78.4±1.1

OOD-GNN 67.2±1.8 78.4±0.9 60.3±4.5 80.1±1.0

4.2 Results on Synthetic Graphs

The results on TRIANGLES and MNIST-75SP are reported
in Table 3. On TRIANGLES, there exist distribution shifts on
the graph sizes. OOD-GNN consistently achieves the best
testing performance compared with other baselines on the
out-of-distribution testing graphs, demonstrating the OOD
generalization capability of our method. The accuracy of a
strong baseline PNA on training graphs is impressive but
drops significantly on the OOD testing graphs. FactorGCN,
as a disentangled graph representation learning method,
decomposes the input graph into several independent factor
graphs so that it may change the semantic implication of
representations into these implicit factors and affect the
performance. In contrast, OOD-GNN learns graph weights
so that the semantic of the graph representations will not be
affected, leading to better generalization ability.

On MNIST-75SP, there exist distribution shifts on graph
features, i.e., graphs in the testing datasets have larger noises.
OOD-GNN achieves the best performance consistently
compared with other methods. For this dataset, each graph
consists of super-pixel nodes and edges that are formed based
on the spatial distance between super-pixel centers. There-
fore, the graph topological structures are relatively more
discriminative than node features in making predictions.
Traditional GNNs fuse heterogeneous information from both
graph topological structures and features into unified graph
representations, so these baselines may learn the spurious
correlations, leading to poor generalization performance. Our
method performs well on OOD testing graphs. One plausi-
ble reason is that when complex non-linear dependencies
between graph structures and features are eliminated, our
method is more likely to learn the true connections between
relevant representations (i.e., informative graph topological
structures) and labels, and conduct inference according to
them only, thus generalize better.

4.3 Results on Real-world Graphs

On real-world molecule and social datasets (i.e., COLLAB,
PROTEINS, and D&D), the training and testing graphs are
split by graph sizes, i.e., our method and baselines are trained
on small graphs and tested on larger graphs. The results are
presented in Table 4. OOD-GNN consistently yields the

best testing performance on all the datasets. In particular,
OOD-GNN improves over the strongest baselines by 2.2%
and 1.7% in PROTEINS25 and D&D300 respectively. Our
model achieves the best OOD generalization performance
under size distribution shifts by encouraging independence
between relevant and irrelevant representations. The results
of baselines degrade due to the spurious correlations be-
tween irrelevant representations and labels. For example,
each graph in the COLLAB dataset corresponds to an ego-
network of different researchers from one field, and the label
denotes the corresponding research field. The truly predictive
representations are from the graph topological structures. If
the GNN models tend to learn spurious correlations between
graph sizes and labels but not focus more on the truly
predictive graph structures, they will fail to make correct
predictions on larger OOD testing graphs.

The graph classification results on nine Open Graph
Benchmark (OGB) datasets are shown in Table 5. The datasets
are split based on the scaffold, i.e., the two-dimensional
structural framework. So the distribution shifts between
training and testing graphs exist on the graph topologi-
cal structure and features, leading to a more challenging
scenario. None of the baselines is consistently competitive
across all datasets, as opposed to our proposed method.
Notice that adding virtual nodes to GCN or GIN is not
a promising improvement for generalization since it can
provide performance gains on some datasets but fail on the
others. FactorGCN shows poor results, possibly because it
enforces the decomposition of the input graphs into several
independent factor graphs for disentanglement, which is
hard to achieve without sufficient supervision. �GIN is a size
generalization method and also performs poorly on OGB
datasets. PNA is proposed to address the size generalization
problem but still fails under the more complex distribution
shifts. TopKPool selects some local parts of the input graph
and ignores the others. The strongest baseline on molecule
and social datasets, i.e., SAGPool, pools the nodes with self-
attention mechanism. However, the accurate selection for
TopKPool and calculation of attention scores for SAGPool
are easily affected by the spurious correlations on OOD
test graphs and therefore also fail to generalize. In contrast,
OOD-GNN shows a strong capability of out-of-distribution
generalization when the input graphs have complicated

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 5: Results on nine Open Graph Benchmark (OGB) datasets. We report the ROC-AUC (%) for classification tasks
and RMSE for regression tasks with the standard deviation on the test set of all methods. None of the baseline methods is
consistently competitive across all datasets, while our proposed method shows impressive performance. (") means that
higher values indicate better results, and (#) represents the opposite.

TOX21 BACE BBBP CLINTOX SIDER TOXCAST HIV ESOL FREESOLV
Metric ROC-AUC (") RMSE (#)
GCN 75.3±0.7 79.2±1.4 68.9±1.5 91.3±1.7 59.6±1.8 63.5±0.4 76.1±1.0 1.11±0.03 2.64±0.24

GCN-virtual 77.5±0.9 68.9±7.0 67.8±2.4 88.6±2.1 59.8±1.5 66.7±0.5 76.0±1.2 1.02±0.10 2.19±0.12
GIN 74.9±0.5 73.0±4.0 68.2±1.5 88.1±2.5 57.6±1.4 63.4±0.7 75.6±1.4 1.17±0.06 2.76±0.35

GIN-virtual 77.6±0.6 73.5±5.2 69.7±1.9 84.1±3.8 57.6±1.6 66.1±0.5 77.1±1.5 1.00±0.07 2.15±0.30
FactorGCN 57.8±2.1 70.0±0.6 54.1±1.1 64.2±2.1 53.3±1.7 51.2±0.8 57.1±1.5 3.39±0.15 5.69±0.32

�GIN 52.3±1.1 54.5±0.9 51.8±1.5 52.2±1.1 51.3±1.1 50.7±0.5 51.3±0.9 4.15±0.10 7.34±0.12
PNA 71.5±0.5 77.4±2.1 66.2±1.2 81.2±2.0 59.6±1.1 60.6±0.2 79.1±1.3 0.94±0.02 2.92±0.16

TopKPool 75.6±0.9 76.9±2.4 68.6±1.1 86.9±1.1 60.6±1.5 64.7±0.1 76.7±1.1 1.17±0.03 2.08±0.10
SAGPool 74.7±3.1 76.6±1.0 69.3±2.1 88.7±1.0 61.3±1.3 64.8±0.2 77.7±1.3 1.22±0.05 2.28±0.12

OOD-GNN 78.4±0.8 81.3±1.2 70.1±1.0 91.4±1.3 64.0±1.3 68.7±0.3 79.5±0.9 0.88±0.05 1.81±0.14

(a) TRIANGLES (b) D&D300 (c) OGBG-MOLBACE

Fig. 3: Ablation study results of our method. The blue curves with circle markers show that as dimensionality of random
Fourier features increases, the generalization performance of OOD-GNN improves. The purple markers show that if we
remove random Fourier features and only eliminate linear correlation, the performance drops significantly. The orange
markers represent the results of GIN, the graph encoder baseline in our method.

structures, especially for the large-scale real-world graphs.

4.4 Ablation Studies
We perform ablation studies over a number of key compo-
nents of our method to analyze their functionalities more
deeply. Specifically, we compare OOD-GNN with the fol-
lowing two variants: (1) Variant 1: it sets the dimensionality
of random Fourier features to different values. (2) Variant
2: it removes all the random Fourier features. For simplicity,
we only report the results on one synthetic dataset (i.e.,
TRIANGLES) and two real-world datasets (i.e., D&D300 and
OGBG-MOLBACE), while the results on other datasets show
similar patterns.

Variant 1 exploits the effect of different dimensions of ran-
dom Fourier features. Note that our method adopts random
Fourier features (see Eq. (4)), which sample from Gaussian
to learn the graph weights and encourage the independence
of representations. It is shown in [61] that if sampling more
random Fourier features (i.e., when Q in Eq. (4) increases),
the learned graph representations will be more independent.
However, there exists a trade-off between independence and
computational efficiency since the more random Fourier fea-
tures are sampled, the higher the computational cost becomes.
When the computational resources are extremely limited, it
is also feasible to randomly select part of the dimensions
in graph representations to calculate the dependence. In
Figure 3, the x-axis represents the dimensionality of random
Fourier features compared to graph representations, e.g., "2x"
indicates Q = 2 in Eq. (4), while "0.2x" means we randomly

select 20% dimensions of graph representations. We observe
from Figure 3 that as the dimensionality of random Fourier
features increases, the performance on OOD testing graphs
grows consistently, which demonstrates that eliminating
the statistical dependence between different dimensions of
the graph representations will encourage the independence
between relevant and irrelevant representations and lead to
better out-of-distribution generalization ability.

Variant 2 removes all the random Fourier features and
the optimization in Eqs. (6)(7) will degenerate to linear
cases, i.e., only eliminating linear correlation rather than
encouraging independence between different dimensions of
graph representations. In Figure 3, this variant is termed
as "no RFF". We can observe a clear performance drop
for this variant, demonstrating that the complex non-linear
dependencies are common in the graph representations. By
eliminating non-linear dependence between representations,
the GNNs will be encouraged to learn true connections
between the input graphs and the corresponding labels.

4.5 Training Dynamic
We can observe the convergence of our proposed method
empirically, although Eqs. (6)(7) are iteratively optimized. In
Figure 4 (a)(b)(c), we show the weighted prediction loss in
the training process on TRIANGLES, D&D300, and OGBG-
MOLBACE, respectively. The loss converges in no more than
100 epochs to about 0.67, 0.30, and 0.25 on the three datasets,
respectively. The results on the other datasets show similar
patterns.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Training loss on TRIANGLES. (b) Training loss on D&D300. (c) Training loss on OGBG-MOLBACE.

Fig. 4: The weighted prediction loss in the training process on three datasets.

(a) Weights distribution on TRIANGLES. (b) Weights distribution on D&D300. (c) Weights distribution on OGBG-
MOLBACE.

Fig. 5: The distribution of the learned graph weights after training on three datasets.

4.6 Weights Distribution
In Figure 5 (a)(b)(c), to further investigate the effectiveness
of the graph reweighting, we show the distribution of the
learned graph weights on TRIANGLES, D&D300, and OGBG-
MOLBACE when the training is finished. The results show
that our proposed method learns non-trivial weights, and
the weights distribution is slightly different across different
datasets.

4.7 Time Complexity
Our method is not only effective but efficient to learn
out-of-distribution generalized graph representation under
complex distribution shifts. The time complexity of our
method is O(|E| d+|V | d

2
+K|B|d

2
), where |V |, |E| denotes

the total number of nodes and edges in the graphs, d is
the dimensionality of the representation, K is the number
of groups of global weights, and |B| is the batch size.
Specifically, the time complexity of the graph encoder GIN is
O(|E| d+ |V | d

2
) and the optimization of graph weights in

Eq. (7) has O(K|B|d
2
) complexity. As a comparison, the time

complexity of GIN, our backbone GNN, is O(|E| d+ |V | d
2
),

i.e., our time complexity is on par since d, K, and |B| are
small constants that are unrelated to the dataset size.

Note that the global-local weight estimator plays an
important role in the efficiency. Without this module, the
time complexity for optimizing consistent graph weights on
the whole dataset can reach O(N

tr
d
2
), which is related to the

number of training graphs N tr and intractable for large-scale
real-world graph datasets. Thanks to the global-local weight
estimator, the time complexity reduces to O(K|B|d

2
) which

is comparable with the backbone and will not induce higher
computational costs. For the TRIANGLE dataset, our method
with and without the global-local weight estimator, take 32s
and 175s to optimize graph weights in the training stage,

respectively, demonstrating the efficiency of our global-local
weight estimator in practice.

4.8 Number of Parameters
The parameters of our method consist of two parts, i.e., the
graph encoder and graph weights. The former is determined
by the graph encoder GNN architecture, which is GIN in
our setting. The latter is determined by the number of
graphs. Taking the OGBG-MOLBACE dataset for example,
the number of parameters of our method is about 0.9M
if we set the number of message-passing layers as 5 and
the dimensionality of the representations as 300. Notice
that our method has comparable or fewer parameters than
the baselines. For the OGBG-MOLBACE dataset with the
same hyper-parameter settings, GIN and PNA (two base-
lines in the experiments) have 0.9M and 6.0M parameters,
respectively. Nevertheless, our method achieves impressive
out-of-distribution generalization performance against the
baselines.

4.9 Hyper-parameter Sensitivity
We investigate the sensitivity of hyper-parameters of our
method, including the number of message-passing layers in
the graph encoder, the dimensionality of the representations
d, the size of global weights, and the momentum coefficient
� in updating global weights. For simplicity, we only report
the results on TRIANGLES (see Figure 6), D&D300 (see
Figure 7), and OGBG-MOLBACE (see Figure 8), while the
results on other datasets show similar patterns. From Figures
6–8, we observe that the performance relies on an appropriate
choice of the number of message-passing layers of the graph
encoder. Since the task of counting triangles is relatively
simple, the graph encoder with two message-passing layers

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) Number of layers. (b) Dimensionality d. (c) Size of global weights. (d) Momentum coefficient.

Fig. 6: The analyses of different hyper-parameters on TRIANGLES dataset.

(a) Number of layers. (b) Dimensionality d. (c) Size of global weights. (d) Momentum coefficient.

Fig. 7: The analyses of different hyper-parameters on D&D300 dataset.

(a) Number of layers. (b) Dimensionality d. (c) Size of global weights. (d) Momentum coefficient.

Fig. 8: The analyses of different hyper-parameters on OGBG-MOLBACE dataset.

is good enough on TRIANGLES, while five layers are needed
to achieve the best performance on OGBG-MOLBACE. When
the number of layers of graph encoder is small, the model
has limited capacity and may not be able to fuse enough
information from neighbors. On the other hand, a very
large number of layers could lead to the over-smoothing
problem [71]. Besides, the optimal dimensionality of the
representations d for TRIANGLES is relatively smaller than
that for D&D300 and OGBG-MOLBACE.

In addition, as the size of global weights increases, the
performance is improved. The global representations and
weights can help to learn consistent graph sample weights on
the whole dataset and therefore improve the generalization
ability of the model.

Finally, we find that the momentum coefficient � also has
a slight influence on the performance. A large � will make
the update of global representations and weights slower,
and a small one will accelerate the update, corresponding to
emphasizing long-term and short-term memory, respectively.

5 CONCLUSIONS

In this paper, we propose a novel out-of-distribution gen-
eralized graph neural network (OOD-GNN) to solve the
problem of generalization of GNNs under complex and
heterogeneous distribution shifts. We propose a nonlinear
graph representation decorrelation method by utilizing
random Fourier features and sample reweighting, so that
the learned representations of OOD-GNN are encouraged

to eliminate the statistical dependence between the repre-
sentations. We further present a scalable global-local weight
estimator, which can learn graph weights for the whole
dataset consistently and efficiently. Extensive experiments
on both synthetic and real-world datasets demonstrate the
superiority of our method against state-of-the-art baselines
for out-of-distribution generalization.

ACKNOWLEDGMENTS
The authors would like to thank Xingxuan Zhang for
valuable discussions. This work was supported in part by
the National Key Research and Development Program of
China No. 2020AAA0106300 and National Natural Science
Foundation of China No. 62250008, No. 62102222.

REFERENCES

[1] A.-L. Barabasi and Z. N. Oltvai, “Network biology: un-
derstanding the cell’s functional organization,” Nature

reviews genetics, vol. 5, no. 2, pp. 101–113, 2004.
[2] D. Easley, J. Kleinberg et al., Networks, crowds, and markets.

Cambridge university press Cambridge, 2010, vol. 8.
[3] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Ge-

niesse, A. S. Pappu, K. Leswing, and V. Pande, “Molecu-
lenet: a benchmark for molecular machine learning,”
Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[4] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge
graph embedding: A survey of approaches and ap-
plications,” IEEE Transactions on Knowledge and Data

Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[5] T. N. Kipf and M. Welling, “Semi-supervised classifi-
cation with graph convolutional networks,” in Interna-

tional Conference on Learning Representations, 2017.
[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero,

P. Lio, and Y. Bengio, “Graph attention networks,” in
International Conference on Learning Representations, 2018.

[7] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?” in International

Conference on Learning Representations, 2019.
[8] W. L. Hamilton, “Graph representation learning,” Syn-

thesis Lectures on Artifical Intelligence and Machine Learn-

ing, vol. 14, no. 3, pp. 1–159, 2020.
[9] J. Li, D. Cai, and X. He, “Learning graph-level

representation for drug discovery,” arXiv preprint

arXiv:1709.03741, 2017.
[10] W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and

D. Yin, “A graph neural network framework for social
recommendations,” IEEE Transactions on Knowledge and

Data Engineering, 2020.
[11] H. Li, X. Wang, Z. Zhang, J. Ma, P. Cui, and W. Zhu,

“Intention-aware sequential recommendation with struc-
tured intent transition,” IEEE Transactions on Knowledge

and Data Engineering, 2021.
[12] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling

polypharmacy side effects with graph convolutional
networks,” Bioinformatics, vol. 34, no. 13, pp. i457–i466,
2018.

[13] T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for
everyone,” Journal of chemical information and modeling,
vol. 55, no. 11, pp. 2324–2337, 2015.

[14] R. S. Bohacek, C. McMartin, and W. C. Guida, “The art
and practice of structure-based drug design: a molecular
modeling perspective,” Medicinal research reviews, vol. 16,
no. 1, pp. 3–50, 1996.

[15] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu,
M. Catasta, and J. Leskovec, “Open graph benchmark:
Datasets for machine learning on graphs,” Advances in

neural information processing systems, vol. 33, pp. 22 118–
22 133, 2020.

[16] Y. Li, B. Qian, X. Zhang, and H. Liu, “Graph neural
network-based diagnosis prediction,” Big Data, vol. 8,
no. 5, pp. 379–390, 2020.

[17] X. Han, X. Hu, H. Wu, B. Shen, and J. Wu, “Risk
prediction of theft crimes in urban communities: An
integrated model of lstm and st-gcn,” IEEE Access, vol. 8,
pp. 217 222–217 230, 2020.

[18] Y. Yang, Z. Wei, Q. Chen, and L. Wu, “Using external
knowledge for financial event prediction based on
graph neural networks,” in Proceedings of the 28th ACM

International Conference on Information and Knowledge

Management, 2019, pp. 2161–2164.
[19] B. Knyazev, G. W. Taylor, and M. R. Amer, “Under-

standing attention and generalization in graph neural
networks,” Advances in Neural Information Processing

Systems, vol. 32, pp. 4202–4212, 2019.
[20] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and

H. Maron, “From local structures to size generalization
in graph neural networks,” in International Conference on

Machine Learning. PMLR, 2021, pp. 11 975–11 986.
[21] B. Bevilacqua, Y. Zhou, and B. Ribeiro, “Size-invariant

graph representations for graph classification extrapo-

lations,” in International Conference on Machine Learning,
2021, pp. 837–851.

[22] K. Xu, M. Zhang, J. Li, S. S. Du, K.-i. Kawarabayashi,
and S. Jegelka, “How neural networks extrapolate: From
feedforward to graph neural networks,” in International

Conference on Learning Representations, 2021.
[23] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-

Paz, “Invariant risk minimization,” arXiv preprint

arXiv:1907.02893, 2019.
[24] L. Tu, G. Lalwani, S. Gella, and H. He, “An empirical

study on robustness to spurious correlations using pre-
trained language models,” Transactions of the Association

for Computational Linguistics, vol. 8, pp. 621–633, 2020.
[25] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning

to reweight examples for robust deep learning,” in
International Conference on Machine Learning, 2018, pp.
4334–4343.

[26] K. Kuang, P. Cui, S. Athey, R. Xiong, and B. Li, “Stable
prediction across unknown environments,” in Proceed-

ings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 1617–1626.
[27] P. W. Koh, S. Sagawa, S. M. Xie, M. Zhang, A. Balsubra-

mani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, T. Lee
et al., “Wilds: A benchmark of in-the-wild distribution
shifts,” in International Conference on Machine Learning,
2021, pp. 5637–5664.

[28] A. Rahimi, B. Recht et al., “Random features for large-
scale kernel machines.” in Advances in Neural Information

Processing Systems, vol. 3. Citeseer, 2007, p. 5.
[29] X. Zhang, P. Cui, R. Xu, L. Zhou, Y. He, and Z. Shen,

“Deep stable learning for out-of-distribution general-
ization,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021, pp. 5372–
5382.

[30] Z. Li, J.-F. Ton, D. Oglic, and D. Sejdinovic, “Towards
a unified analysis of random fourier features,” in
International Conference on Machine Learning. PMLR,
2019, pp. 3905–3914.

[31] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised
feature learning via non-parametric instance discrimi-
nation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 3733–3742.
[32] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momen-

tum contrast for unsupervised visual representation
learning,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 9729–
9738.

[33] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,”
in International Conference on Machine Learning, 2019, pp.
3734–3743.

[34] Z. Zhang, J. Bu, M. Ester, J. Zhang, Z. Li, C. Yao,
D. Huifen, Z. Yu, and C. Wang, “Hierarchical multi-
view graph pooling with structure learning,” IEEE

Transactions on Knowledge and Data Engineering, 2021.
[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive

representation learning on large graphs,” in Proceedings

of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 1025–1035.
[36] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E.

Lenssen, G. Rattan, and M. Grohe, “Weisfeiler and le-
man go neural: Higher-order graph neural networks,” in

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 4602–4609.

[37] W. Yu, X. Lin, J. Liu, J. Ge, W. Ou, and Z. Qin, “Self-
propagation graph neural network for recommenda-
tion,” IEEE Transactions on Knowledge and Data Engineer-

ing, 2021.
[38] J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, P. Yu, and L. He,

“Higher-order attribute-enhancing heterogeneous graph
neural networks,” IEEE Transactions on Knowledge and

Data Engineering, 2021.
[39] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg,

I. Titov, and M. Welling, “Modeling relational data with
graph convolutional networks,” in European semantic

web conference. Springer, 2018, pp. 593–607.
[40] J. Gao, J. Gao, X. Ying, M. Lu, and J. Wang, “Higher-

order interaction goes neural: A substructure assem-
bling graph attention network for graph classification,”
IEEE Transactions on Knowledge and Data Engineering,
2021.

[41] H. Li, X. Wang, Z. Zhang, and W. Zhu, “Out-of-
distribution generalization on graphs: A survey,” arXiv

preprint arXiv:2202.07987, 2022.
[42] A. Santoro, F. Hill, D. Barrett, A. Morcos, and T. Lillicrap,

“Measuring abstract reasoning in neural networks,” in
International Conference on Machine Learning, 2018, pp.
4477–4486.

[43] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli,
“Analysing mathematical reasoning abilities of neural
models,” in International Conference on Learning Represen-

tations, 2019.
[44] P. Veličković, R. Ying, M. Padovano, R. Hadsell, and

C. Blundell, “Neural execution of graph algorithms,” in
International Conference on Learning Representations, 2020.

[45] A. Loukas, “What graph neural networks cannot learn:
depth vs width,” in International Conference on Learning

Representations, 2020.
[46] V. Garg, S. Jegelka, and T. Jaakkola, “Generalization and

representational limits of graph neural networks,” in
International Conference on Machine Learning. PMLR,
2020, pp. 3419–3430.

[47] S. Verma and Z.-L. Zhang, “Stability and generalization
of graph convolutional neural networks,” in Proceedings

of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 1539–1548.
[48] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and

D. Batra, “Reducing overfitting in deep networks by
decorrelating representations,” in International Confer-

ence on Learning Representations, 2016.
[49] S. Gu, Y. Hou, L. Zhang, and Y. Zhang, “Regularizing

deep neural networks with an ensemble-based decor-
relation method.” in International Joint Conferences on

Artificial Intelligence, 2018, pp. 2177–2183.
[50] D. Arpit, C. Xiong, and R. Socher, “Predicting with high

correlation features,” arXiv preprint arXiv:1910.00164,
2019.

[51] C. J. Song, J. C. Vladescu, K. F. Reeve, C. F. Miguel, and
S. L. Breeman, “The influence of correlations between
noncritical features and reinforcement on stimulus gen-
eralization,” Journal of Applied Behavior Analysis, vol. 54,
no. 1, pp. 346–366, 2021.

[52] M. Hebiri and J. Lederer, “How correlations influence

lasso prediction,” IEEE Transactions on Information Theory,
vol. 59, no. 3, pp. 1846–1854, 2012.

[53] P. Rodríguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus,
and X. Roca, “Regularizing cnns with locally con-
strained decorrelations,” arXiv preprint arXiv:1611.01967,
2016.

[54] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning
via sample reweighting,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 5692–5699.

[55] K. Kuang, R. Xiong, P. Cui, S. Athey, and B. Li, “Stable
prediction with model misspecification and agnostic
distribution shift,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4485–
4492.

[56] Z. Zhang, Y. Zhang, and Z. Li, “Removing the feature
correlation effect of multiplicative noise,” arXiv preprint

arXiv:1809.07023, 2018.
[57] H. Bahng, S. Chun, S. Yun, J. Choo, and S. J. Oh,

“Learning de-biased representations with biased rep-
resentations,” in International Conference on Machine

Learning, 2020, pp. 528–539.
[58] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling,

“Diva: Domain invariant variational autoencoders,” in
Medical Imaging with Deep Learning, 2020, pp. 322–348.

[59] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf,
“Measuring statistical dependence with hilbert-schmidt
norms,” in International conference on algorithmic learning

theory. Springer, 2005, pp. 63–77.
[60] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf,

“Kernel measures of conditional dependence.” in Ad-

vances in Neural Information Processing Systems, 2007, pp.
489–496.

[61] E. V. Strobl, K. Zhang, and S. Visweswaran, “Approxi-
mate kernel-based conditional independence tests for
fast non-parametric causal discovery,” Journal of Causal

Inference, vol. 7, no. 1, 2019.
[62] Y. Yang, Z. Feng, M. Song, and X. Wang, “Factorizable

graph convolutional networks,” Advances in Neural

Information Processing Systems, vol. 33, pp. 20 286–20 296,
2020.

[63] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković,
“Principal neighbourhood aggregation for graph nets,”
Advances in Neural Information Processing Systems, vol. 33,
pp. 13 260–13 271, 2020.

[64] H. Gao and S. Ji, “Graph u-nets,” in International

Conference on Machine Learning, 2019, pp. 2083–2092.
[65] P. Erdős, A. Rényi et al., “On the evolution of random

graphs,” Publ. Math. Inst. Hung. Acad. Sci, vol. 5, no. 1,
pp. 17–60, 1960.

[66] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Pro-

ceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[67] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk, “Slic superpixels compared to state-of-the-
art superpixel methods,” IEEE transactions on pattern

analysis and machine intelligence, vol. 34, no. 11, pp. 2274–
2282, 2012.

[68] A. Shrivastava and P. Li, “A new space for comparing
graphs,” in IEEE/ACM International Conference on Ad-

vances in Social Networks Analysis and Mining. IEEE,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

2014, pp. 62–71.
[69] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vish-

wanathan, A. J. Smola, and H.-P. Kriegel, “Protein
function prediction via graph kernels,” Bioinformatics,
vol. 21, no. suppl_1, pp. i47–i56, 2005.

[70] P. D. Dobson and A. J. Doig, “Distinguishing enzyme
structures from non-enzymes without alignments,” Jour-

nal of molecular biology, vol. 330, no. 4, pp. 771–783, 2003.
[71] X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang,

and J. Jiang, “Lasagne: A multi-layer graph convolu-
tional network framework via node-aware deep ar-
chitecture,” IEEE Transactions on Knowledge and Data

Engineering, 2021.
[72] Z. Shen, P. Cui, K. Kuang, B. Li, and P. Chen, “Causally

regularized learning with agnostic data selection bias,”
in Proceedings of the 26th ACM international conference on

Multimedia, 2018, pp. 411–419.
[73] R. Xu, P. Cui, Z. Shen, X. Zhang, and T. Zhang, “Why

stable learning works? a theory of covariate shift gener-
alization,” arXiv preprint arXiv:2111.02355, 2021.

[74] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE transac-

tions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[75] J.-T. Hsieh, B. Liu, D.-A. Huang, L. F. Fei-Fei, and
J. C. Niebles, “Learning to decompose and disentangle
representations for video prediction,” in Advances in

neural information processing systems, 2018, pp. 517–526.
[76] L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele,

and M. Fritz, “Disentangled person image generation,”
in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 99–108.
[77] J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu, “Disen-

tangled graph convolutional networks,” in International

Conference on Machine Learning, 2019, pp. 4212–4221.
[78] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Wat-

ters, G. Desjardins, and A. Lerchner, “Understanding
disentangling in �-vae,” NeurIPS Workshop on Learning

Disentangled Representations, 2017.

Haoyang Li received his B.E. from the Depart-
ment of Computer Science and Technology, Ts-
inghua University in 2018. He is a Ph.D. candi-
date in the Department of Computer Science and
Technology of Tsinghua University. His research
interests are mainly in machine learning on
graphs and out-of-distribution generalization. He
has published several papers in prestigious jour-
nals and conferences, e.g., TKDE, KDD, NeurIPS,
ICLR, etc.

Xin Wang is currently an Assistant Professor
at the Department of Computer Science and
Technology, Tsinghua University. He got both of
his Ph.D. and B.E degrees in Computer Science
and Technology from Zhejiang University, China.
He also holds a Ph.D. degree in Computing
Science from Simon Fraser University, Canada.
His research interests include cross-modal mul-
timedia intelligence and inferable recommenda-
tion in social media. He has published several
high-quality research papers in top conferences

including ICML, MM, KDD, WWW, SIGIR etc. He is the recipient of 2017
China Postdoctoral innovative talents supporting program. He receives
the ACM China Rising Star Award in 2020.

Ziwei Zhang received his Ph.D. from the Depart-
ment of Computer Science and Technology, Ts-
inghua University, in 2021. He is currently a post-
doc researcher in the Department of Computer
Science and Technology at Tsinghua University.
His research interests focus on machine learning
on graphs, including graph neural network (GNN),
network embedding (a.k.a. network representa-
tion learning), and automated graph machine
learning. He has published over 20 papers in
prestigious conferences and journals, including

KDD, NeurIPS, ICML, AAAI, IJCAI, and TKDE.

Wenwu Zhu is currently a Professor in the De-
partment of Computer Science and Technology
at Tsinghua University, the Vice Dean of National
Research Center for Information Science and
Technology, and the Vice Director of Tsinghua
Center for Big Data. Prior to his current post, he
was a Senior Researcher and Research Manager
at Microsoft Research Asia. He was the Chief
Scientist and Director at Intel Research China
from 2004 to 2008. He worked at Bell Labs New
Jersey as Member of Technical Staff during 1996-

1999. He received his Ph.D. degree from New York University in 1996.
His current research interests are in the area of data-driven multimedia

networking and Cross-media big data computing. He has published over
350 referred papers, and is inventor or co-inventor of over 50 patents.
He received eight Best Paper Awards, including ACM Multimedia 2012
and IEEE Transactions on Circuits and Systems for Video Technology in
2001 and 2019.

He served as EiC for IEEE Transactions on Multimedia (2017-2019).
He served in the steering committee for IEEE Transactions on Multimedia
(2015-2016) and IEEE Transactions on Mobile Computing (2007-2010),
respectively. He serves as General Co-Chair for ACM Multimedia 2018
and ACM CIKM 2019, respectively. He is an AAAS Fellow, IEEE Fellow,
SPIE Fellow, and a member of The Academy of Europe (Academia
Europaea).

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3193725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 14:02:04 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Works
	Method
	Notations and Problem Formulation
	Statistical Independence with Graph Reweighting
	Global-Local Graph Weight Estimator
	Training Procedure

	Experiments
	Experimental Setup
	Baselines
	Datasets
	Implementation Details

	Results on Synthetic Graphs
	Results on Real-world Graphs
	Ablation Studies
	Training Dynamic
	Weights Distribution
	Time Complexity
	Number of Parameters
	Hyper-parameter Sensitivity

	Conclusions
	Biographies
	Haoyang Li
	Xin Wang
	Ziwei Zhang
	Wenwu Zhu

	Appendix A: Background Knowledge
	Appendix B: Additional Related Works
	Appendix C: Hardware and Software Configurations
	Appendix D: Datasets

